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➢ Definitions

➢ Boundary layer thickness

➢ Displacement thickness

➢ Momentum thickness

➢ Integral analysis

➢ Laminar boundary layers: von Karman solution

➢ Laminar boundary layers: Blasius solution

➢ Turbulent boundary layers

➢ Law of the wall

➢ Effect of roughness

➢ Effect of pressure gradient

Topic 2 – Boundary layer flows

Topic 2 can be studied in F. White, Ch. 6/7
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Learning outcomes:

➢ Be able to describe how a boundary layer develops on a flat plate

➢ Know what a boundary layer velocity profile is and be capable of 

sketching both for laminar and turbulent flow

➢ Know what methods are used to define boundary layer thickness and be 

able to explain the difference between 𝛿, 𝛿∗ and 𝜃
➢ Understand the relationships between plate drag, momentum thickness 

and shear stress

➢ Understand how shear stress and drag are related for a flat plate 

➢ Be able to calculate boundary layer thickness, drag force and local shear 

stress for a flat plate with both laminar and turbulent boundary layer

➢ Understand how flow condition varies through a turbulent boundary layer

➢ Be able to explain what the “law of the wall” chart shows

➢ Understand how roughness affects drag and perform appropriate 

calculations

➢ Be capable of describing how pressure gradient affects boundary layer 

profile

Topic 2 – Boundary layer flows
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Boundary layers

When a fluid flows in contact with a solid surface, the no-slip condition at the wall 

generates a flow region near the wall where viscous effects are important, and the 

velocity increases rapidly from zero (at the wall) to its undisturbed main stream

value (far from the wall). This region is the boundary layer, and it exists in both 

internal and external flows. Outside the boundary layer, viscous effects are 

negligible, and the flow can be treated as inviscid.

Boundary layer in pipe flow 

Boundary layer around a cylinder

Boundary layer over an airfoil

Boundary layer over an airfoil (experiment)

Boundary layer
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Boundary layers

Flow past an airfoil: CFD simulation

Boundary layer: flow region with high velocity 

gradients in the direction normal to the airfoil surface  
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Boundary layers

The dynamics of the boundary layer depends on the Reynolds number. For flow 

over a flat plate:

➢ Low-Re: 𝑅𝑒𝐿 < 103 ⟹ Broad viscous region, 𝛿 ≈ 𝐿, extending ahead of the plate 

➢ High-Re: 𝑅𝑒𝐿 > 103 ⟹ Thin boundary layer, 𝛿 ≪ 𝐿, effects only downstream

𝑅𝑒𝐿 =
𝜌𝑈𝐿

𝜇
,

𝑅𝑒𝐿 < 103 𝑅𝑒𝐿 > 103

• 103 < 𝑅𝑒𝐿 < 106 ⟹ Laminar boundary layer

• 106 < 𝑅𝑒𝐿 ⟹ Turbulent boundary layer

They can occur in sequence: laminar till 𝑅𝑒𝑥 =
𝜌𝑈𝑥

𝜇
= 106, turbulent for 𝑅𝑒𝑥 > 106

𝑅𝑒𝑥 =
𝜌𝑈𝑥

𝜇
𝑥: distance from leading edge
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Boundary layers

In practical engineering applications Reynolds numbers are high.

Example: flow past the front wing of a F1 car; 𝑈 = 360 Τ𝑘𝑚 ℎ , 𝐿 = 0.4 𝑚

Example: flow past the wing of an airplane; 𝑈 = 800 Τ𝑘𝑚 ℎ , 𝐿 = 2 𝑚, air properties 

@10km altitude 

𝑅𝑒𝐿 =
𝜌𝑈𝐿

𝜇
=
1.2

𝑘𝑔
𝑚3 ∙ 100

𝑚
𝑠 ∙ 0.4 𝑚

1.82 ∙ 10−5𝑃𝑎 ∙ 𝑠
= 2.6 ∙ 106

𝑅𝑒𝐿 =
𝜌𝑈𝐿

𝜇
=
0.4

𝑘𝑔
𝑚3 ∙ 222

𝑚
𝑠 ∙ 2 𝑚

1.45 ∙ 10−5𝑃𝑎 ∙ 𝑠
= 1.22 ∙ 107



8

Boundary layers thickness

𝛿: distance from the surface at which the velocity reaches 

99% of the velocity of the main stream.

It increases with 𝑥 (will see later):

• 𝛿 ≈ Τ5𝑥 𝑅𝑒𝑥
Τ1 2 , 103 < 𝑅𝑒𝑥 < 106

• 𝛿 ≈ Τ0.16𝑥 𝑅𝑒𝑥
Τ1 7
, 𝑅𝑒𝑥 > 106

𝑢

𝑦 𝑢𝑚

0.99𝑢𝑚𝛿

𝛿 increases more rapidly when flow becomes turbulent

Distance from surface rescaled 

by boundary layer thickness

Velocity gradient at the wall is 

much larger for turbulent flow
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Actual volumetric flow rate above the plate:

Flow rate above the plate if there was no boundary layer :

Volumetric flow rate reduction:

Flow rate within distance 𝛿∗ if there was no boundary layer :

Displacement thickness

Other measures for thickness: 

displacement thickness 𝜹∗

The wall slows down the fluid and thus the volumetric 

flow rate of fluid is reduced. 𝛿∗ quantifies the vertical 

displacement of the wall that would have caused the 

same flow rate reduction if 𝑢 𝑥, 𝑦 = 𝑢𝑚 everywhere.

න

0

∞

𝑢 𝑥, 𝑦 𝑑𝑦

න

0

∞

𝑢𝑚𝑑𝑦

න

0

∞

𝑢𝑚 − 𝑢 𝑑𝑦

න

0

𝛿∗

𝑢𝑚𝑑𝑦 = 𝑢𝑚𝛿
∗

𝑢𝑚𝛿
∗ = න

0

∞

𝑢𝑚 − 𝑢 𝑑𝑦 ⟹ 𝛿∗ = න

0

∞

1 −
𝑢

𝑢𝑚
𝑑𝑦
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Actual momentum flux above the plate:

Momentum flux if there was no boundary layer:

Momentum reduction:

Momentum flux within distance 𝜃 if there was no boundary layer:

Momentum thickness

Other measures for thickness: 

momentum thickness 𝜽

vertical displacement of the wall that, with the same 

mass flow rate 𝜌𝑢, would have caused the same 

momentum reduction if 𝑢 𝑥, 𝑦 = 𝑢𝑚 everywhere.

න

0

∞

(𝜌𝑢)𝑢𝑑𝑦

න

0

∞

(𝜌𝑢)𝑢𝑚𝑑𝑦

න

0

∞

𝜌𝑢 𝑢𝑚 − 𝑢 𝑑𝑦

(𝜌𝑢𝑚)𝑢𝑚𝜃 = න

0

∞

𝜌𝑢 𝑢𝑚 − 𝑢 𝑑𝑦 ⟹ 𝜃 = න

0

∞
𝑢

𝑢𝑚
1 −

𝑢

𝑢𝑚
𝑑𝑦

Careful: same 

mass flow rate 𝜌𝑢

(𝜌𝑢𝑚)𝑢𝑚𝜃
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Integral analysis of the boundary layer

A practical question: what’s the drag force 𝐷 exerted by the fluid to the plate?

This can be obtained by integrating the momentum equation on a control volume 

placed above the flat plate.

We consider the control volume with boundary surface 1234 in the figure below.

At steady-state, the notes of TF1 (linear momentum, p.100) and the slides of T1-

Navier-Stokes (slide 15) suggest:

Flow is null across surfaces 2 (it’s a streamline: fluid doesn’t cross it) and 4 (it’s a wall)

𝐹𝑥 = ሶ𝑄𝑥,𝑜𝑢𝑡 − ሶ𝑄𝑥,𝑖𝑛

𝐷

ሶ𝑄𝑥,𝑖𝑛 = ሶ𝑄𝑥,1 = 𝜌𝑏ℎ𝑈0 𝑈0

ሶ𝑄𝑥,𝑜𝑢𝑡 = ሶ𝑄𝑥,3 = න

0

𝛿

[𝜌𝑏𝑢 𝐿, 𝑦 ]𝑢 𝐿, 𝑦 𝑑𝑦

𝐹𝑥 = −𝐷,
➢ We assume constant pressure everywhere 

and therefore neglect the force induced by 

pressure gradients, we retain only drag.

➢ 𝐹𝑥 is negative because it’s the force 

exerted by the plate to the fluid and thus 

directed towards −𝑥. 
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Integral analysis of the boundary layer

−𝐷 = 𝜌𝑏න

0

𝛿

𝑢2𝑑𝑦 − 𝜌𝑏ℎ𝑈0
2

Let’s now find an expression for ℎ.

Continuity: ሶ𝑀𝑜𝑢𝑡 − ሶ𝑀𝑖𝑛 = 0

⟹ න

0

𝛿

𝜌𝑏𝑢𝑑𝑦 − 𝜌𝑏ℎ𝑈0 = 0 ⟹ ℎ = න

0

𝛿
𝑢

𝑈0
𝑑𝑦

𝐷 = 𝜌𝑏න

0

𝛿

𝑢 𝑈0 − 𝑢 𝑑𝑦 = 𝜌𝑏𝑈0
2𝜃

Having neglected pressure gradients, the drag force is only due to the wall shear 

stress and the total drag over the plate is the integral of the wall shear stress:

𝐷 = 𝑏න

0

𝐿

𝜏𝑤 𝑥 𝑑𝑥 ⟹
𝑑𝐷

𝑑𝑥
= 𝑏𝜏𝑤 𝑥 = 𝜌𝑏𝑈0

2
𝑑𝜃

𝑑𝑥
⟹ 𝜏𝑤 𝑥 = 𝜌𝑈0

2
𝑑𝜃

𝑑𝑥

𝜏𝑤

Momentum thickness and drag are related!

and use it in the expression for 𝐷:
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Integral analysis of the boundary layer

𝜏𝑤(𝑥) = 𝜌𝑈0
2
𝑑𝜃

𝑑𝑥

𝜏𝑤

This expression is valid for both laminar and 

turbulent flows. However, we cannot use it 

unless we know how to express Τ𝑑𝜃 𝑑𝑥. For this,

we’ll need a velocity profile.

The shear stress is often expressed with the non-dimensional factor called skin 

friction coefficient (see Topic 1, slide 42):

The drag can also be expressed in terms of a non-dimensional drag coefficient:

𝐶𝑓(𝑥) =
𝜏𝑤(𝑥)

1
2 𝜌𝑈0

2
= 2

𝑑𝜃

𝑑𝑥

𝐶𝐷 =
𝐷/𝑝𝑙𝑎𝑡𝑒_𝑎𝑟𝑒𝑎

1
2
𝜌𝑈0

2
=
𝐷/(𝑏𝐿)

1
2
𝜌𝑈0

2
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Worked example 1

A thin, flat plate of 2 𝑚 length is placed parallel to a 6 𝑚/𝑠 flow of water at 20 ℃. 

• Calculate the boundary layer thickness at the trailing edge using the relationships 

of slide 8.

• Calculate the length of the plate where the flow is laminar.

Solution

Water at 20 ℃: ρ = 998 Τ𝑘𝑔 𝑚3 , 𝜇 = 0.001 𝑃𝑎 ∙ 𝑠.
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Worked example 2

A long, thin, flat plate is placed parallel to a 100 𝑚/𝑠 flow of air at 20 ℃ and 𝑝 = 1 𝑏𝑎𝑟.

• Calculate at what distance from the leading edge the boundary layer thickness will 

be 2 𝑐𝑚.

Solution

Air at 20 ℃, 1 𝑏𝑎𝑟: ρ = 1.2 Τ𝑘𝑔 𝑚3 , 𝜇 = 1.8 ∙ 10−5𝑃𝑎 ∙ 𝑠.
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Laminar boundary layers

The analysis developed so far is valid for both laminar and 

turbulent boundary layers. We have seen how to express 

𝜏𝑤, but we don’t know yet how to calculate it based on 

known parameters (𝜌, 𝑈0, 𝜇, 𝑥). In order to get a numerical 

result, we need to assume a velocity profile. 

Laminar flow – von Karman approximate solution

For a laminar flow, von Karman (1921) assumed the following 

parabolic velocity profile:

constructed to satisfy the boundary conditions:

𝑢 𝑥, 𝑦 = 𝑈0
2𝑦

𝛿
−
𝑦2

𝛿2
, 0 ≤ 𝑦 ≤ 𝛿 𝑥

• 𝑢(𝑦 = 0) = 0

• 𝑢(𝑦 = 𝛿) = 𝑈0 • ቚ
𝜕𝑢

𝜕𝑦 𝑦=𝛿
= 0

• ቚ
𝜕𝑢

𝜕𝑦 𝑦=0
≠ 0

𝑦

𝑥

𝛿 𝑥

𝑥

𝑢 𝑥, 𝑦

𝑈0
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Laminar boundary layers – von Karman

We can now use this velocity profile to derive all the 

quantities of interest.

𝑢 𝑥, 𝑦 = 𝑈0
2𝑦

𝛿
−
𝑦2

𝛿2
, 0 ≤ 𝑦 ≤ 𝛿 𝑥

𝜏𝑤 𝑥 = 𝜌𝑈0
2
𝑑𝜃

𝑑𝑥
= 𝜌𝑈0

2
2

15

𝑑𝛿

𝑑𝑥
Not yet useful, now we need 

𝑑𝛿

𝑑𝑥

But remember that: 𝜏𝑤 𝑥 = 𝜇 ቤ
𝜕𝑢

𝜕𝑦
𝑦=0

=
2𝜇𝑈0
𝛿 𝑥

𝜌𝑈0
2
2

15

𝑑𝛿

𝑑𝑥
=
2𝜇𝑈0
𝛿 𝑥

𝛿 𝑑𝛿 =
15𝜇

𝜌𝑈0
𝑑𝑥

rearranging

𝜃 𝑥 = න

0

∞
𝑢

𝑈0
1 −

𝑢

𝑈0
𝑑𝑦 = න

0

𝛿
𝑢

𝑈0
1 −

𝑢

𝑈0
𝑑𝑦 = න

0

𝛿
2𝑦

𝛿
−
𝑦2

𝛿2
1 −

2𝑦

𝛿
+
𝑦2

𝛿2
𝑑𝑦 =

2

15
𝛿 𝑥

Because for 𝑦 > 𝛿, 𝑢 ≈ 𝑈0

Integrating both sides

between 𝑥 = 0 and 𝑥

න

𝛿 𝑥=0 =0

𝛿(𝑥)

𝛿 𝑑𝛿 = න

𝑥=0

𝑥
15𝜇

𝜌𝑈0
𝑑𝑥

𝛿2

2
0

𝛿

=
𝛿2

2
=
15𝜇

𝜌𝑈0
𝑥

𝛿

𝑥
≈ 5.5

𝜇

𝜌𝑈0𝑥
=

5.5

𝑅𝑒𝑥
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Laminar boundary layers – von Karman

𝛿 ≈
5.5𝑥

𝑅𝑒𝑥

In laminar flow, the boundary 

layer thickness grows as 𝑥1/2

𝜏𝑤 𝑥 =
2𝜇𝑈0
𝛿 𝑥

=
0.363𝜌𝑈0

2

𝑅𝑒𝑥

𝐶𝑓 𝑥 =
𝜏𝑤 𝑥

1
2 𝜌𝑈0

2
=

0.73

𝑅𝑒𝑥

Results valid as long as: 103 < 𝑅𝑒𝑥 < 106

Is this the only theory available? No, there is also Blasius’ “exact” solution!

𝐷 = 𝑏න

0

𝐿

𝜏𝑤 𝑥 𝑑𝑥 = 0.73
𝜌𝑈0

2𝑏𝐿

𝑅𝑒𝐿
𝐶𝐷 =

𝐷/(𝑏𝐿)

1
2 𝜌𝑈0

2
=

1.46

𝑅𝑒𝐿

𝛿∗ 𝑥 = න

0

𝛿

1 −
𝑢

𝑈0
𝑑𝑦 = න

0

𝛿

1 −
2𝑦

𝛿
+
𝑦2

𝛿2
𝑑𝑦 =

𝛿 𝑥

3
=
1.83𝑥

𝑅𝑒𝑥

𝜃 𝑥 =
2

15
𝛿 𝑥 =

0.73𝑥

𝑅𝑒𝑥
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Laminar boundary layers – Blasius

Prandtl’s boundary layer theory

The flow over the plate is assumed steady-state, incompressible, the fluid Newtonian; 

gravity is neglected. The equations governing the flow are (T1, slide 30):

Prandtl applied these equations to the flow in the boundary layer (1904), under the 

assumption that 𝛿 ≪ 𝑥, and he simplified them by assuming that:

• 𝑣 ≪ 𝑢: the velocity is almost uni-directional along x

• : gradients along y are more important than those along x

• 𝑅𝑒𝑥 ≫ 1

𝜌 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

𝜌 𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

𝜕𝑢

𝜕𝑥
≪

𝜕𝑢

𝜕𝑦
,

𝜕𝑣

𝜕𝑥
≪

𝜕𝑣

𝜕𝑦
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Laminar boundary layers – Blasius

Therefore, the equations could be simplified as:

The continuity equation stays unchanged:

Blasius (1908) further simplified these equations by assuming that, for a flat plate, 

𝑑𝑝

𝑑𝑥
= 0. Furthermore, he argued that:

Based on this theory, he obtained a numerical solution for 𝑢 𝑥, 𝑦 , details here:

https://en.wikipedia.org/wiki/Blasius_boundary_layer

or (Ch. 3): https://essay.utwente.nl/63314/1/BSc_report_Peter_Puttkammer.pdf

small

𝜌 𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2

small smallvery small

𝑝 = 𝑝(𝑥)

𝜌 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝑑𝑝

𝑑𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

small

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝑑𝑝

𝑑𝑥
+
𝜇

𝜌

𝜕2𝑢

𝜕𝑦2

𝑢 𝑥, 𝑦

𝑈0
= 𝑓

𝑦

𝛿(𝑥)
, meaning that the profile is self-similar. 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

https://en.wikipedia.org/wiki/Blasius_boundary_layer
https://essay.utwente.nl/63314/1/BSc_report_Peter_Puttkammer.pdf
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Laminar boundary layers – Blasius

Blasius numerical solution:
Comparison of velocity profiles 

of Blasius and von Karman 

𝛿
𝜌𝑈0
𝜇𝑥

≈ 5.0 ⟹
𝛿

𝑥
≈

5.0

𝑅𝑒𝑥

𝑢

𝑈0
≈ 0.99, 𝑦 ≡ 𝛿

𝛿∗

𝑥
=
1.721

𝑅𝑒𝑥
,
𝜃

𝑥
=
0.664

𝑅𝑒𝑥
, 𝐶𝑓=

0.664

𝑅𝑒𝑥
, 𝐶𝐷=

1.328

𝑅𝑒𝐿
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Laminar boundary layers – Blasius

Very nice theories Dr. Blasius and Dr. von Karman, but do they work??

CFD simulation of flow over a flat plate: 𝑈0 = 0.01 Τ𝑚 𝑠 , 𝜈 = Τ𝜇 𝜌 = 10−6 Τ𝑚2 𝑠 , 𝐿 = 1 𝑚.

𝑅𝑒𝐿 = 104

𝑦

𝑥

𝑢 = 0.99𝑈0

𝑥 = 0.3𝐿 𝑥 = 0.6𝐿 𝑥 = 0.9𝐿𝑥 = −0.5𝐿

Flow

Wall: 𝑢 = 0
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Laminar boundary layers – Blasius

Very nice theories Dr. Blasius and Dr. von Karman, but do they work??

CFD simulation of flow over a flat plate: 𝑈0 = 0.01 Τ𝑚 𝑠 , 𝜈 = Τ𝜇 𝜌 = 10−6 Τ𝑚2 𝑠 , 𝐿 = 1 𝑚.

From CFD: 𝛿(𝑥) is taken as the line 

where 𝑢 = 0.99𝑈0, see the white 

line in the contour plot of past slide
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Worked example 3

A laminar flow of air moves parallel to a flat plate of length 𝐿 = 0.6 𝑚 and width 𝑏 =

0.3 𝑚, with a velocity 𝑈 = 5 Τ𝑚 𝑠. Estimate at the trailing edge of the plate, the 

boundary layer thickness, 𝛿, the displacement thickness, 𝛿∗, and the momentum 

thickness, 𝜃. In your estimation use Blasius boundary layer exact solution. For air, 

take 𝜌 = 1.2 Τ𝑘𝑔 𝑚3 and 𝜇 = 1.8 ∙ 10−5 𝑃𝑎 ∙ 𝑠. 

Solution
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Worked example 4

A sharp flat plate with length 𝐿 = 50 𝑐𝑚 and width 𝑏 = 3 𝑚 is parallel to a stream of 

velocity 𝑈 = 2.5 Τ𝑚 𝑠. Find the drag on one side of the plate, and the boundary layer 

thickness 𝛿 at the trailing edge, for (a) air and (b) water at 20 ℃ and 1 𝑎𝑡𝑚

Solution

(a) Air at 20 ℃, 1 atm: ρ = 1.2 Τ𝑘𝑔 𝑚3 , 𝜇 = 1.8 ∙ 10−5𝑃𝑎 ∙ 𝑠.
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Worked example 4

A sharp flat plate with length 𝐿 = 50 𝑐𝑚 and width 𝑏 = 3 𝑚 is parallel to a stream of 

velocity 𝑈 = 2.5 Τ𝑚 𝑠. Find the drag on one side of the plate, and the boundary layer 

thickness 𝛿 at the trailing edge, for (a) air and (b) water at 20 ℃ and 1 𝑎𝑡𝑚

Solution

(b) Water at 20 ℃, 1 atm: ρ = 998 Τ𝑘𝑔 𝑚3 , 𝜇 = 0.001 𝑃𝑎 ∙ 𝑠.
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Worked example 5

A thin flat plate of size 110 𝑐𝑚 × 55 𝑐𝑚 is immersed in a stream of oil (ρ =

870 Τ𝑘𝑔 𝑚3 , 𝜇 = 0.104 𝑃𝑎 ∙ 𝑠) of velocity 6 Τ𝑚 𝑠. Compute the friction drag on one 

side of the plate. Find the drag on one side of the plate if the stream is parallel to the 

(a) longer side or (b) shorter side.

Solution
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Worked example 5

Recalculate the drag force for the following two configurations:

(a)

(b)

Solution

Flow

Flow
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Worked example 6

The velocity field of an air laminar boundary layer flow at two points above a flat 

plate, 𝑦 = 2 𝑚𝑚 and 𝑦 = 3 𝑚𝑚, both of them located at a distance 𝑥 from the 

leading edge of the plate, are known to be 𝑢 𝑥, 𝑦 = 2 𝑚𝑚 = 3 Τ𝑚 𝑠 and 𝑢(

)

𝑥, 𝑦 =

3 𝑚𝑚 = 4 Τ𝑚 𝑠. Using von Karman approximation find; (1) the value of the stream 

velocity above the boundary layer, (2) the thickness of the boundary layer at the 

point 𝑥 and (3) the corresponding value of the skin friction coefficient at 𝑥. For air, 

take 𝜌 = 1.2 Τ𝑘𝑔 𝑚3 and 𝜇 = 1.8 ∙ 10−5 𝑃𝑎 ∙ 𝑠. 

Solution
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Worked example 6
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Turbulent boundary layers

From slide 6: the flow in the boundary 

layer becomes turbulent when

𝑅𝑒𝑥 =
𝜌𝑈𝑥

𝜇
> 106

But what is turbulence?? Difficult to find a clear definition!

Representation of turbulence by L. da Vinci

(1452-1519): “Observe the motion of the surface

of the water, which resembles that of hair, which

has two motions, of which one is caused by the

weight of the hair, the other by the direction of

the curls; thus the water has eddying motions,

one part of which is due to the principal current,

the other to the random and reverse motion.”

Turbulent water jet

The starry night (1889) – Van Gogh
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Turbulent boundary layers

Transition from laminar to turbulent flow in a pipe:

https://www.youtube.com/watch?v=BBiR6FWmyv4

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
> 2300Remember that in a pipe flow becomes turbulent when:

https://www.youtube.com/watch?v=BBiR6FWmyv4
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Turbulent boundary layers

Turbulent flow over a flat plate
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Turbulence

Turbulent fluid motion is an irregular flow condition in which velocity

and all other flow properties show random and chaotic variations in space and time.

Reynolds decomposition:

Mean component:

Fluctuation:

𝑢 = ത𝑢 + 𝑢′

ത𝑢 =
1

𝑇
න

0

𝑇

𝑢 𝑑𝑡

𝑢′ = 𝑢 − ത𝑢

ഥ𝑢′ =
1

𝑇
න

0

𝑇

𝑢 − ത𝑢 𝑑𝑡 = ത𝑢 − ത𝑢 = 0

The fluctuation has 

zero mean value

If we rewrite the Navier-Stokes equations replacing 𝒖 = ഥ𝒖 + 𝒖′ and perform a 

time-average, we obtain that the shear stress in the boundary layer over a flat 

plate can be expressed as:

𝜏 = 𝜇
𝜕ത𝑢

𝜕𝑦
− 𝜌𝑢′𝑣′ = 𝜏𝑙𝑎𝑚 + 𝜏𝑡𝑢𝑟𝑏

𝑇: generic 

time period

F. White, Ch. 6.5
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Based on the importance of 𝜏𝑙𝑎𝑚 and 𝜏𝑡𝑢𝑟𝑏, the boundary layer in turbulent flow 

conditions can be decomposed into:

➢ Viscous sub-layer: near the wall, where laminar shear 𝜏𝑙𝑎𝑚 dominates

➢ Overlap layer: both laminar and turbulent shear are important

➢ Turbulent layer: farther from the wall, where turbulent shear 𝜏𝑡𝑢𝑟𝑏 dominates

Law of the wall

𝜏 = 𝜇
𝜕ത𝑢

𝜕𝑦
− 𝜌𝑢′𝑣′ = 𝜏𝑙𝑎𝑚 + 𝜏𝑡𝑢𝑟𝑏

Overlap layer

Viscous wall layer
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𝑦+ =
𝑦𝑢∗

𝜈

𝑢
+
=

𝑢 𝑢
∗

𝑢+ = 𝑦+

𝑢+ =
1

𝐾
ln𝑦+ + 𝐵

Law of the wall

Experiments of turbulent wall flows over smooth walls, for both internal (pipes) and 

external flows, have demonstrated that there exists a universal velocity profile for 

the flow near the wall in many different flow configurations: the law of the wall

Non-dimensional velocity parallel to the 

wall: 𝑢+ =
𝑢

𝑢∗
= 𝐹 𝑦+

Non-dimensional distance from the wall:

𝑦+ =
𝑦𝑢∗

𝜈
, 𝑢∗ =

𝜏𝑤
𝜌

Τ1 2
Friction 

velocity

Law of the wall:

➢ 𝑦+ ≤ 5: viscous sublayer, 𝑢+ = 𝑦+

➢ 𝑦+ ≥ 30: turbulent layer,

from experiments (smooth wall): K=0.4, B=5

➢ 𝑦+ ≫ 30: the profile deviates from the log 

law and becomes case-dependent

𝑢+ =
1

𝐾
ln 𝑦+ + 𝐵,

5 < 𝑦+ < 30
No theory 

available, only 

experimental data 
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Turbulent boundary layers - Prandtl

Prandtl compiled many experimental datasets for turbulent boundary layers over 

smooth plates and observed that a one-seventh-power-law approximates well the 

turbulent velocity profile (discarding the laminar sublayer):

𝑢

𝑈0
≈

𝑦

𝛿

Τ1 7

Based on this, he obtained the following law

for the film thickness (details in F. White, Sec. 

7.4):

and:

𝛿

𝑥
≈

0.16

𝑅𝑒𝑥
Τ1 7

𝐶𝑓 𝑥 =
0.027

𝑅𝑒𝑥
Τ1 7
, 𝐶𝐷 =

0.031

𝑅𝑒𝐿
Τ1 7
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Summary of boundary layers over smooth walls

Summary of the correlations obtained for laminar and turbulent boundary layers over 

a smooth flat wall:

Laminar, von Karman Laminar, Blasius Turbulent, Prandtl

Boundary layer thickness 𝛿
𝛿

𝑥
=

5.5

𝑅𝑒𝑥

𝛿

𝑥
=

5.0

𝑅𝑒𝑥

𝛿

𝑥
=

0.16

𝑅𝑒𝑥
Τ1 7

Displacement thickness 𝛿∗
𝛿∗

𝑥
=
1.826

𝑅𝑒𝑥

𝛿∗

𝑥
=
1.721

𝑅𝑒𝑥

𝛿∗

𝑥
=

0.02

𝑅𝑒𝑥
Τ1 7

Momentum thickness 𝜃
𝜃

𝑥
=

0.73

𝑅𝑒𝑥

𝜃

𝑥
=
0.664

𝑅𝑒𝑥

𝜃

𝑥
=
0.0156

𝑅𝑒𝑥
Τ1 7

Shape factor 𝐻 = Τ𝛿∗ 𝜃 2.5 2.59 1.28

Skin friction coefficient 𝐶𝑓 𝐶𝑓 =
0.73

𝑅𝑒𝑥
𝐶𝑓 =

0.664

𝑅𝑒𝑥
𝐶𝑓 =

0.027

𝑅𝑒𝑥
Τ1 7

Drag coefficient 𝐶𝐷 𝐶𝐷 =
1.46

𝑅𝑒𝐿
𝐶𝐷 =

1.328

𝑅𝑒𝐿
𝐶𝐷 =

0.031

𝑅𝑒𝐿
Τ1 7
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From 2018/19 exam. A thin flat plate of 2.5 metre length is mounted parallel to the 

free stream in a wind tunnel, the free stream velocity is fixed to 42 m/s with high 

turbulence intensity. What would be the thickness of the boundary layer at the 

middle of the flat plate. (Take ρ = 1.2 Τ𝑘𝑔 𝑚3 , 𝜇 = 1.8 ∙ 10−5𝑃𝑎 ∙ 𝑠). 

Solution

Worked example 7
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Drag coefficient for laminar-turbulent flows

There is no unique value for the laminar-to-turbulent flow transition over flat plates:

𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 5 ∙ 105 − 3 ∙ 106

Rough wall,

disturbed flow

Smooth wall,

well-organised flow

𝑥
𝑥 = 0 𝑥 = 𝑥𝑡𝑟𝑎𝑛𝑠 𝑥 = 𝐿

𝐿𝑙𝑎𝑚 𝐿𝑡𝑢𝑟𝑏

𝑥𝑡𝑟𝑎𝑛𝑠 =
𝜇𝑅𝑒𝑡𝑟𝑎𝑛𝑠

𝜌𝑈
, 𝐿𝑙𝑎𝑚 = 𝑥𝑡𝑟𝑎𝑛𝑠, 𝐿𝑡𝑢𝑟𝑏 = 𝐿 − 𝑥𝑡𝑟𝑎𝑛𝑠

If 𝑅𝑒𝐿 < 𝑅𝑒𝑡𝑟𝑎𝑛𝑠, it means that 𝐿 < 𝑥𝑡𝑟𝑎𝑛𝑠 and the 

plate is all in laminar flow; we can use (Blasius):

𝐶𝐷 =
1.328

𝑅𝑒𝐿

Blasius

Prandtl

If 𝑅𝑒𝐿 ≫ 𝑅𝑒𝑡𝑟𝑎𝑛𝑠, it means that 𝐿𝑡𝑢𝑟𝑏 ≈ 𝐿; we can 

assume that the entire plate is in turbulent flow:

𝐶𝐷 =
0.031

𝑅𝑒𝐿
Τ1 7
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Drag coefficient for laminar-turbulent flows

But, at intermediate values of 𝑅𝑒𝐿 (𝑅𝑒𝐿 > 𝑅𝑒𝑡𝑟𝑎𝑛𝑠, but not too much) the extension of 

the section in laminar flow will not be negligible…Which formula for 𝐶𝐷 should be 

used? We can think of an average value:

𝑥
𝑥 = 0 𝑥 = 𝑥𝑡𝑟𝑎𝑛𝑠 𝑥 = 𝐿

𝐿𝑙𝑎𝑚 𝐿𝑡𝑢𝑟𝑏

Blasius

Prandtl

𝐶𝐷 = 𝐶𝐷,𝑙𝑎𝑚
𝐿𝑙𝑎𝑚
𝐿

+ 𝐶𝐷,𝑡𝑢𝑟𝑏
𝐿𝑡𝑢𝑟𝑏
𝐿

This has been already worked out by Schlichting, 

who proposed the following correlations:

𝐶𝐷 =
0.031

𝑅𝑒𝐿
Τ1 7
−
1440

𝑅𝑒𝐿
, 𝑖𝑓 𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 5 ∙ 105

𝐶𝐷 =
0.031

𝑅𝑒𝐿
Τ1 7
−
8700

𝑅𝑒𝐿
, 𝑖𝑓 𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 3 ∙ 106

As 𝑅𝑒𝐿 becomes very large, the two correlations 

converge to Prandtl formula (see figure). 
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Take Worked example 7 and evaluate the drag force exerted on the plate assuming 

(a) turbulent flow from the leading edge, (b) laminar turbulent flow with 𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 5 ∙

105, (c) laminar turbulent flow with 𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 3 ∙ 106. Consider a plate width of 0.5 m.

Solution

Worked example 8
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Effect of roughness

Real surfaces are never perfectly smooth, but there is always a certain level of wall 

roughness 𝜀, which depends on material, production process, operating conditions, etc.   

Nominal surface location

+

-

The wall roughness has no impact on the values of 𝐶𝐷 when the flow is laminar. 

However, high roughness may cause early transition to turbulence, i.e. it reduces 

𝑅𝑒𝑡𝑟𝑎𝑛𝑠. For turbulent flow, the surface roughness causes a deviation of 𝐶𝐷 from the 

smooth wall correlation (𝐶𝐷 = Τ0.031 𝑅𝑒𝐿
Τ1 7

for a flat plate), with 𝐶𝐷 increasing with 

increasing Τ𝜀 𝐿.

Depending on the roughness parameter Τ𝜀 𝐿, 𝐶𝐷 for flat plates in turbulent flow can be 

evaluated based on a chart which is the analogous of Moody chart for pipe flow (TF1 

notes, p. 118).
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Effect of roughness

Depending on the roughness parameter Τ𝜀 𝐿, 𝐶𝐷 for flat plates in turbulent flow can be 

evaluated based on a chart which is the analogous of Moody chart for pipe flow (TF1 

notes, p. 118).

Therefore, for rough plates in turbulent 

flow, 𝐶𝐷 = 𝐶𝐷 𝑅𝑒𝐿, Τ𝜀 𝐿 . Furthermore, 

experiments have shown that, at fixed Τ𝜀 𝐿, 

there exists a threshold value of 𝑅𝑒𝐿 above 

which 𝐶𝐷 becomes independent of 𝑅𝑒𝐿, i.e. 

the curves in the chart become horizontal 

and 𝐶𝐷 = 𝐶𝐷 Τ𝜀 𝐿 only. Note that the same 

happens in pipe flows.

This regime is called fully rough, and in 

this regime 𝐶𝐷 can be calculated as:

𝐶𝐷 = 1.89 + 1.62 log
𝐿

𝜀

−2.5
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Take Worked example 7. After years of use and poor maintenance, the flat plate 

(previously considered perfectly smooth) may have dirt deposited on it, which makes 

its surface appear as rough. Evaluate 𝐶𝐷 assuming (a) 𝜀 = 0.25 𝑚𝑚 and (b) 𝜀 =

1.25 𝑚𝑚.

Solution

Worked example 9
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A hydrofoil 0.4 m long and 2 m wide is placed in a seawater flow of 12 m/s. Estimate 

the friction drag on both sides of the foil for (a) turbulent smooth-wall flow from the 

leading edge, (b) laminar turbulent flow with 𝑅𝑒𝑡𝑟𝑎𝑛𝑠 = 5 ∙ 105, (c) turbulent rough-

wall flow with 𝜀 = 0.12 𝑚𝑚. Take: ρ = 1025 Τ𝑘𝑔 𝑚3 , 𝜈 = 1.05 ∙ 10−6 Τ𝑚2 𝑠

Worked example 10

Solution
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Flow past cylinder

𝑅𝑒𝐷 =
𝜌𝑈𝐷

𝜇

𝑅𝑒𝐷 ≥ 80: von Karman vortex 

street. Flow is still laminar!

https://www.dropbox.com/s/hd8toebmkg5i2zq/flowPastCylinder_AllRe.avi?dl=0

https://www.dropbox.com/s/hd8toebmkg5i2zq/flowPastCylinder_AllRe.avi?dl=0
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Flow past cylinder

Do you think that von Karman vortex street is simply nice colors? Take a look at 

the Tacoma bridge collapse: https://www.youtube.com/watch?v=mXTSnZgrfxM

https://www.youtube.com/watch?v=mXTSnZgrfxM
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𝑅𝑒𝐷 = 0.1

𝑅𝑒𝐷 = 20

Streamlines and vectors 

downstream the cylinder 

are well organised 

𝜃 ≈ 130 𝑑𝑒𝑔: flow 

separates from the 

cylinder, creating a 

recirculating wake

𝜃

Flow past cylinder
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𝑅𝑒𝐷 = 0.1

𝑅𝑒𝐷 = 20

𝜃

𝜃

𝑑𝑝

𝑑𝜃
< 0: Favourable 

pressure gradient 

that promotes 

boundary layer 

attachment

Pressure profile along 

the cylinder top wall

𝜃 ≈ 130 𝑑𝑒𝑔: flow 

separation
𝑑𝑝

𝑑𝜃
> 0: Adverse pressure 

gradient that 

induces flow 

separation

𝒅𝒑

𝒅𝜽
< 𝟎

𝒅𝒑

𝒅𝜽
> 𝟎

𝒅𝒑

𝒅𝜽
< 𝟎

𝜃

𝜃 ≈ 97 𝑑𝑒𝑔:
Τ𝑑𝑝 𝑑𝜃

changes sign

Flow past cylinder – effect of pressure gradient
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Flow past cylinder – wake length

𝑅𝑒𝐷 = 0.1

𝑅𝑒𝐷 = 20

𝑅𝑒𝐷 = 40
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Flow past cylinder – flow separation

𝑅𝑒𝐷 = 10

𝑅𝑒𝐷 = 20

𝑅𝑒𝐷 = 40

𝑅𝑒𝐷 = 80

𝑅𝑒𝐷 = 200

𝜃𝑠 ≈ 145 𝑑𝑒𝑔

𝜃𝑠 ≈ 130 𝑑𝑒𝑔

𝜃𝑠 ≈ 120 𝑑𝑒𝑔

𝜃𝑠 ≈ 110 𝑑𝑒𝑔

𝜃𝑠 ≈ 105 𝑑𝑒𝑔

Wu et al. (2004) J. Fluid Mech. 515:233 

𝜃𝑠 decreases 

as 𝑅𝑒𝐷
increases 

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/experimental-and-numerical-study-of-the-separation-angle-for-flow-around-a-circular-cylinder-at-low-reynolds-number/2AFFC3A04F55C43419D146D7CF80ADDA
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/experimental-and-numerical-study-of-the-separation-angle-for-flow-around-a-circular-cylinder-at-low-reynolds-number/2AFFC3A04F55C43419D146D7CF80ADDA
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Effect of pressure gradient

Free-stream velocity and pressure gradient are related by the Bernoulli equation:

𝑝 +
𝜌𝑈2

2
= 𝑐𝑜𝑛𝑠𝑡 ⟹

𝑑𝑝

𝑑𝑥
+ 𝜌𝑈

𝑑𝑈

𝑑𝑥
= 0 ⟹

𝑑𝑝

𝑑𝑥
= −𝜌𝑈

𝑑𝑈

𝑑𝑥

Separation occurs when the adverse 

pressure gradient is too large for the fluid to 

continue flowing along the wall. In general, 

separation depends on 𝑅𝑒, the shape of the 

body and the relative direction of the flow 

compared to the surface of the body 



54

Now you should be able to:

➢Sketch laminar and turbulent boundary layers over flat plates

➢Explain the difference among boundary layer thickness, displacement & momentum

thickness, and calculate them based on laminar/turbulent flow correlations

➢Explain the relationship between momentum thickness, sheat stress, drag force and 

drag coefficient for a flat plate, and calculate the drag force for laminar/turbulent flow

➢Sketch the velocity profile in a turbulent boundary layer based on the law of the wall

➢Understand how roughness affects the drag force

➢Describe how the pressure gradient impacts the boundary layer profile

Further reading/assessment:

• F. White book, Sec. 7.1, 7.2, 7.3, 7.4, 7.5, 6.5 (law of the wall); problems in Ch. 7.

Topic 2 – Boundary layer flows
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Seminar

Topic 2 – Boundary layer flows
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A train is 100 m long, 2.8 m wide and 2.75 m high. The train travels at 180 km/h through

air of density 1.2 kg/m3 and kinematic viscosity 1.5∙10-5 m2/s. Calculate (a) the boundary

layer thickness at the rear of the train, (b) the frictional drag acting on the train, (c) the 

power required to overcome the frictional drag.

Worked example 11

Solution
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Exam 15/16: fluids longer question 20.

(a) A laminar flow of air moves parallel to a flat plate of length 𝐿 = 0.6 𝑚 and width 𝑏 =

0.3 𝑚, with a velocity 𝑈 = 5 Τ𝑚 𝑠. Estimate at the trailing edge of the plate, the boundary 

layer thickness, 𝛿, the displacement thickness, 𝛿∗, and the momentum thickness, 𝜃. In 

your estimation use Blasius boundary layer exact solution. For air, take 𝜌 = 1.2 Τ𝑘𝑔 𝑚3

and 𝜇 = 1.8 ∙ 10−5 𝑃𝑎 ∙ 𝑠. 

Worked example 12

Solution – We did this already, worked example 3
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Exam 15/16: fluids longer question 20.

(b) If the flow field above the flat plate increases its velocity and becomes turbulent,

you can use a strain gauge to measure the surface shear stress, 𝜏𝑤, at a position 𝑥

from the leading edge of the plate, in order to estimate the new value of the flow

velocity 𝑈 above the turbulent boundary layer. By considering Prandtl’s boundary

layer approximation, show that in this case the following relation can be obtained

between the surface shear, 𝜏𝑤, and external flow velocity, 𝑈:

Worked example 12

Solution

𝜏𝑤 =
0.0134𝜌6/7𝜇1/7

𝑥1/7
𝑈13/7 Formulae sheet from Moodle

https://moodle.nottingham.ac.uk/pluginfile.php/6599124/mod_resource/content/1/MM2TF2%20-%20Formulae%202019.pdf
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Exam 15/16: fluids longer question 20.

(c) How much is the new value of 𝑈, if in your measurement you found that at the

trailing edge of the plate, 𝑥 = 0.6 𝑚, the value of 𝜏𝑤 = 20 Τ𝑘𝑔 𝑚𝑠2 . Also for this new

value of 𝑈, estimate at the trailing edge of the plate, the boundary layer thickness, 𝛿,

the momentum thickness, 𝜃, and the total drag force 𝐷 supported by the plate. In your

estimation use Prandtl’s turbulent boundary layer approximation.

Worked example 12

Solution
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Exam 15/16: fluids longer question 20.

(d) Finally find the corresponding turbulent boundary layer flow velocity "𝑢" at the

trailing edge of the plate 𝑥 = 0.6 𝑚, and at the height 𝑦 given by your previous

estimation in part a) of the laminar boundary layer thickness. In your evaluation of "𝑢"

use the power law approximation of turbulent boundary layer velocity profile:

Worked example 12

Solution

𝑢

𝑈
=

𝑦

𝛿

Τ1 7
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Consider the following expression for the velocity distribution in a laminar boundary

layer on a flat plate:

(a) Is this expression satisfying the required boundary conditions for the velocity field?

(b) Derive relationships for the boundary layer thickness, displacement thickness,

momentum thickness and drag coefficient based on this velocity profile.

Worked example 13

Solution

𝑢 𝑥, 𝑦

𝑈0
=
3

2

𝑦

𝛿
−
1

2

𝑦

𝛿

3

, 0 ≤ 𝑦 ≤ 𝛿 𝑥
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Worked example 13
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Worked example 13


